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Collective response of an array of rotating particles to fluctuating confining forces

G. Schliecker,* Y. Khidas, M. Ammi, and J.-C. Messager
Groupe Matière Condense´e et Matériaux, Bâtiment 11A, Campus de Beaulieu, Universite´ de Rennes I, F-35042 Rennes, France

~Received 2 December 1999!

We study the influence of fluctuations of confining forces on the rotation patterns in a dense array of
cylinders. Our theoretical studies are motivated by new results from detailed time-resolved experimental
measurements. In order to calculate the system’s evolution in time at each moment, a molecular-dynamics code
adapted to the system is developed. The numerical procedure is tested by a comparison with rigorous predic-
tions derived analytically. The chain’s reaction on oscillating confining forces is analyzed numerically for
different typical cases. Our theoretical results reproduce the striking features of the experimental data. A
quantitative analysis of the experimental data is performed by a computation of their power spectrum and of
spatial and temporal correlation functions. From our comparison of the theoretical and experimental results we
conclude that the experimental rotation patterns result of random superpositions of different steady-state
patterns~‘‘collective random walk’’!.

PACS number~s!: 45.70.2n, 62.20.2x, 81.05.Rm
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I. INTRODUCTION

Force distributions and the resulting frictional propert
of dense granular media are subjects of great interest@1,2#.
When a dense packing of spherical particles is moved w
out deformation on a sliding plane, collective rotations a
built up in order to reduce the frictional resistance: at a c
tact between two particles, no dissipation takes place, w
they simply roll against each other. In most nonartific
dense packings, however, these rotations are frustrated d
geometrical constraints. In two-dimensional disk assemb
whenever three rotating disks are in mutual contact, at le
one of the three contacts has to slide. This frustration
rotations has an important influence on the organization
the particles’ rotations.

The simplest system with completely frustrated rotatio
is a one-dimensional confined array of cylinders on a slid
plane, moved at constant acceleration in its main direct
Theoretically, for a perfect system, the organization of
cylinders’ rotations in their steady state is well understo
@3,4#. Less is known about the temporal evolution of t
system. This did not seem to be important, since meas
ments of a first experimental realization of the system w
found to be in convincing agreement with theoretical stea
state predictions@5#.

We refined the experimental setup in Ref.@5#. Our experi-
mental device now enables us to investigate the temp
evolution of the rotational motion of the cylinders in grea
detail. It has turned out that temporal fluctuations of exter
control parameters due to imperfections of the experime
system have an interesting and non-negligible influence
the rotational patterns@6#. Due to these fluctuations, a simp
comparison with the steady-state properties of the per
theoretical system could not be performed. They instead
quire a theoretical discussion, taking into account the tem
ral fluctuations of the external control parameters.

*Present address: MPI for the Physics of Complex Systems, N¨th-
nitzer Str. 38, 01187 Dresden, Germany.
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In this paper, we will present a detailed study of the c
inders’ rotations for fluctuating confining forces. In partic
lar, a theoretical approach adapted to the experimental s
ation is developed.

The paper is organized as follows. In Sec. II, the expe
mental setup is shortly introduced. Typical features of
experimental system will be presented.

Theoretical calculations are presented in Sec. III. A th
retical description of the system begins with a representa
of the equations of motion in Sec. III A. Rigorous results f
the system’s evolution at constant external control para
eters are derived analytically in Sec. III B. In order to stu
the system’s reaction on fluctuating compressions, in S
III C a simplified molecular-dynamics code is develope
The temporal evolution of the rotations is determined n
merically for constant control parameters first. The nume
cal results are checked by a quantitative comparison with
rigorous analytical predictions derived. The typical transiti
time of the experimental system is estimated, and all stea
state rotation velocities of the cylinders of the array are
termined. Then the system’s reaction to fluctuations of
compression of the chain is determined for typical cases.
numerical results are compared with the experimental da

In Sec. IV, the temporal fluctuations of the experimenta
measured rotation angles are analyzed quantitatively
means of their power spectrum and temporal autocorrela
functions. The results are found to be best described b
stationary stochastic process for the random velocities~ran-
dom walk!. From this hypothesis, further information abo
the experimentally nonaccessible short-time behavior of
fluctuations is derived.

II. EXPERIMENTAL RESULTS I:
SPATIAL CORRELATIONS

The system investigated here is shown schematically
Fig. 1: a close packed chain ofL hard-core cylinders is base
on a horizontal plane moving with a constant velocityvp
from left to right. The array, indexed withi 51, . . . ,L, from
left to right, is confined by horizontal forces at both end
744 ©2000 The American Physical Society
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PRE 62 745COLLECTIVE RESPONSE OF AN ARRAY OF ROTATING . . .
Friction at the interparticle contacts and between the cy
ders and the plane induces a complex behavior of the r
tional motion of the particles.

Theoretically, at constant confining forces and shear
velocity, the system reaches a steady state with collec
rotational modes after a transition time~cf. Fig. 1!. The array
of cylinders is subdivided into two spatial domains. In t
first domain, on the left hand side, all the cylinders rotate
the same sense imposed by the motion of the plane. In
domain, the rotational velocities of neighboring cylinders a
perfectly correlated. In the second domain, neighboring c
inders are counter-rotating, and their rotational velocities
perfectly anticorrelated@3#.

For the investigation of the experimental system, the c
inders’ rotation angles are obtained from marks on th
fronts. We measure them automatically by a CCD cam
connected to an image analysis with a time stepdt. In order
to gain detailed insight into the time evolution of the syste
dt has been chosen as small as possible@6#.

A polar representation of the measured angles in Fig
gives an overview over the spatiotemporal behavior of
whole array: the radius and polar angle represent the t
and rotation angle of each cylinder, respectively. The cen
of the different circles represent the spatial positions of
cylinders. In Fig. 2, experimental results are represented f
total run of 6870 s withdt59 s. We have chosen a chain
ten Plexiglas cylinders with radiiR512.5 mm and masse
m556.1 g, rolling on a metallic plane withvp575 mm/s.
The chain has been confined by a cardboard block of 7
on the left and a fixed wall on the right. Figure 2 shows th
the left cylinders mainly follow the motion of the plane
whereas irregular fluctuations of the rotation angles can
observed on the right hand side. Due to these fluctuati
the relative tangential velocities at the contacts can hardly
estimated, neither from this representation nor from the t
rotation angles as proposed in Ref.@5#. Furthermore, the time
interval dt between the two measurements is restricted
the precision of the measured angles~about1°). This pro-
hibits a direct approach to instantaneous angular veloci
Nevertheless, as shown in Ref.@6#, our detailed measure
ments allow us to deduce a counter-rotating behavior at
end of the chain, looking closer at the evolution of the ro

FIG. 1. The system considered here: a close-packed arra
hard-core cylinders, confined by horizontal forces at the end of
chain, located on a horizontally moving plane.

FIG. 2. Polar representation of the temporal evolution of
rotation angles for the different cylinders. The cylinders’ positio
are represented as circles. The distance from a point of a curv
the center of its circle represents the time.
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tion angles for neighboring cylinders.
An overview of the spatial correlations between rotatio

of different cylinders can be obtained from the cros
correlation function. This function constitutes a further to
for a characterization of a counter-rotating behavior. T
cross correlation between the quantitiesf i and f j of two
cylindersi and j is defined as

Cf~ i , j !5

E dt f i~ t ! f j~ t !

AE dt f i
2~ t !AE dt8 f j

2~ t8!

, ~1!

where the notation*dt•••ª*0
T(dt/T) . . . , with the total in-

tegration timeT, had been introduced. Forf i(t)56 f j (t),
one obtainsCf( i , j )561, reflecting strong~anti!correla-
tions.

In order to estimate the correlations between the ang
velocities of different cylinders, we have computed this fun
tion for the short-time rotation anglesf (t)5Q(t1Dt)
2Q(t) of neighboring cylinders from the experimental da
of Fig. 2. Theoretically, this spatial correlation function
discontinuous: it is equal to11 in the first domain~cf. Fig.
1!, with a jump to21 in the counter-rotating domain. Th
experimental result for neighboring cylinders,CDQ( i ,i 11),
is represented in Fig. 3. Whereas the strong correlations
i<3 confirm our observations in Fig. 2, the strong antic
relations at the right hand side quantify a nearly perf
counter-rotation. An intermediate behavior is given for
< i<7. This unexpected behavior and the continuous
crease at the right hand side will be analyzed here.

The experimentally observed strong~anti!correlations be-
tween the short-time rotation angles of neighboring cylind
for small ~large! i are in good agreement with prediction
from the steady-state analysis performed in Ref.@3#. How-
ever, neither the intermediate behavior in between nor
angular fluctuations at the end of the array can be obtai
for constant horizontal compression, as supposed in Ref.@3#.
Nevertheless, as shown in Ref.@6#, these unexpected exper
mental features can be easily derived from the hypothesi
temporal superpositions of different steady-state patterns

of
e

e

to

FIG. 3. Spatial correlations between the short-time rotat
angles of neighboring cylinders.
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746 PRE 62SCHLIECKER, KHIDAS, AMMI, AND MESSAGER
Ref. @6#, it was argued that these superpositions could b
consequence of fluctuations of the horizontal compressio
the array due to imperfections in the cylindrical shape of
particles.

III. THEORY

In this section, we will present a quantitative theoretic
investigation of the system under temporally fluctuating ho
zontal confining forces. To this end, the equations of mot
for cylinders presented in Sec. III A will be integrated n
merically. Such an analysis goes beyond the steady-s
analysis for constant forces@3,4#, since it requires a determi
nation of the system’s evolution in time at each moment.
Sec. III B, this evolution is studied first analytically for con
stant confining forces. The case of fluctuating confin
forces will then be treated numerically in Sec. III C. To th
end, the numerical simulations of the equations of mot
will be performed with a simple molecular-dynamics cod
The numerical code developed here is checked by a qu
tative comparison of the simulation results with the analy
cal solutions from Sec. III B. Representative numerical
sults for oscillating horizontal compressions will b
presented and discussed at the end of this section. The
compared with the experimental observations.

A. Equations of motion

We consider a dense horizontal packing ofL parallel
identical hard-core cylinders with radiiR and massesm ~see
Fig. 1!. The cylinders, based on a moving horizontal pla
are indexed from left to right withi 51, . . . ,L. The evolu-
tion of the cylinders’ rotations is governed by the forc
acting on the particles. The gravitational force of each cy
der isG5(0,2mg), whereg59.81 m/s is the gravitationa
acceleration. Further external forces are applied to the
tem vertically from the reaction of basal plane, and horizo
tally from the confining forces at both ends. The geometry
the close packing is not affected during the system’s evo
tion. At the contacts, friction forces are mobilized when, d
to the motion of the basal plane and/or the rotations of
cylinders, nonvanishing relative tangential velocities appe

In order to simplify the formal representation in the fo
lowing, the horizontal confining forces are considered to
exerted from particles with indicesi 50 ~left! and i 5L11
~right!. The bottom will be represented as particle with ind
i 5L12. At interparticle and particle-plane contacts, we d
fine the unit-distance normal vectorsni j 52nj i and their cor-
responding tangent vectorst i j 5ni j 3(0,0,1), as represente
in Fig. 4.

At the contact between two particlesi and j, a normal
force parallel toni j ,Ni j 5Ni j ni j , with Ni j >0 appears. Our
analysis will be restricted to cases where the geometry of
packing is not affected by the evolution of the syste
Clearly, this condition allows one to consider only a r
stricted range of values for the external forces.

At interparticle contacts, tangential velocities of the c
inders’ surfaces due to their rotational motion are denote
vi

t5v i
tt i j , i 51, . . . ,L. They are simply related to the angul

velocities v i : v i
t5Rv i . For the external contacts, we a

sumev0
t 5vL11

t 50 andvL12
t 52vp , wherevp is the veloc-

ity of the moving plane.
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Friction forcesat the interparticle contacts play an esse
tial role in the rotational motion of the cylinders. A nonva
ishing relative tangential velocityv i j

r 5v i
t1v j

t at a contact
point ^ i , j & implies a friction force, which is~anti!parallel to
the tangential vector at the contact:T i j 5Ti j t i j . Following
the friction law of Coulomb@7#, the strength of this force is
proportional to the normal forceNi j . As pointed out in Refs.
@3,8#, a closed contact̂i j & remains sliding even at vanishin
relative tangential velocity ifv̇ i j

r Þ0. This leads to a gener
alized version of Coulomb’s law for closed contacts in
dynamical system@8#,

Ti j 52m i j @sgn~v i j
r !1dv i j

r ,0 sgn~ v̇ i j
r !#Ni j , ~2!

for v i j
r Þ0 or v̇ i j

r Þ0. Here we have introduced the signu
function sgn(x)ªuxu/x (xÞ0), 0(x50). Whereas the first
term in expression~2! represents Coulomb’s friction law in
its original version@7#, the second term was suggested
Ref. @8#. The positive friction coefficientsm i j are supposed
to depend on the contacting materials, but not on the rela
tangential velocities as, e.g., in Ref.@9#. They arem between
two cylinders,m9ªm015mL,L11 between the cylinders an
the confining particles at the ends of the chain, andm8
ªm i ,L12 between the cylinders and the plane. Express
~2! is valid only for sliding contacts, i.e., if the relative ve
locity or acceleration does not vanish. Otherwise, the con
becomes nonsliding, and the tangential contact force ha
satisfy only the relation

uTi j u<m i j Ni j for v i j
r 5 v̇ i j

r 50. ~3!

We now turn to theequations of motion, governing the
system’s evolution in time. For each cylinderi 51, . . . ,L,
we have two translational equations of motion and one ro
tional equation of motion for its translational velocityvi and
angular velocityv i . The equations of motion for the cylin
ders’ translational velocities read

mv̇i5G1 (
j 50

L12

x i j ~T i j 1Ni j !, i 51, . . . ,L. ~4!

Here we have introduced the characteristic functionx i j :
x i j 51, if the particlesi and j are in contact; otherwisex i j

50. The condition of closed contacts requires thatv̇i5 v̇

FIG. 4. Normal and tangential contact vectors of thei th cylin-
der.
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5( v̇,0) for all cylinders. The rotational equations of motio
do not explicitly depend on the normal contact forces:

~ I /R!v̇ i5 (
j 50

L12

x i j Ti j , i 51, . . .L. ~5!

The moment of inertiaI of a cylinder with homogeneou
mass distribution is given byI 5mR2/2. Note that the cylin-
ders considered in Eqs.~4! and ~5! range fromi 51, . . . ,L,
whereas the summation overj also includes external par
ticles, representing the confining walls and the bottom. Si
we are concerned with cylinders of identical massesm, it is
convenient to measure all forces in units ofmg.
Introducing the dimensionless forcesG/(mg)5(0,21),
T i j /(mg), andNi j /(mg), Eqs.~4! and ~5! read

dvi8

dt8
5

G

mg
1 (

j 50

L12

x i j S T i j

mg
1

Ni j

mgD , i 51, . . . ,L ~6!

and

dv i8

dt8
52(

j 50

L12

x i j

Ti j

mg
, i 51, . . . ,L, ~7!

with the dimensionless quantitiest8ªtg/vp , v i8ªv i /vp ,
andv i8ªv iR/vp .

In this paper, we will focus on the experimental situati
with vp5const. anddv i8/dt850. Thus the temporal evolu
tion of the system is determined by theL values for the
cylinders’ angular accelerationsdv i8/dt8 only. They depend
on the tangential contact forces@see expression~7!#. For a
total number ofNtot contacts, there are 2Ntot values of the
contact forcesNi j andTi j . Consequently, the analysis of th
system’s evolution in time requires the determination
these 2Ntot1L quantities from the equations derived.

The equations of motion~4! and~5! or ~6! and~7! form a
set of 3L linear equations. They are integrated starting w
an initial configuration of tangential velocities$v i

t%. For all
contacts with nonvanishing relative tangential velocities,
normal and tangential contact forces are uniquely relate
expression~2!. For each of the remaining contacts with va
ishing relative tangential velocities, there are two possib
ties: ~a! For asliding contact (v̇ i j

r Þ0), the contact forces ar
again related by expression~2!. The sign of the relative an
gular accelerationv̇ i j

r , input in expression~2! and resulting
from expression~7!, however, has to be determined se
consistently.~b! For eachnonslidingcontact,inequality ~3!

has to be satisfied. The conditionv̇ i j
r 50 yields a further

equation, but with a maximum number ofL linear indepen-
dent equations. Thus, for fewer thanL nonsliding contacts,
Ntot independent equations can be obtained from express
~2! and ~3!.

In the packing investigated here, the total number of c
tacts is given byNtot52L11 ~see Fig. 1!. This yields a total
number of 2Ntot1L55L12 values of contact forces an
angular accelerations. These quantities are governed
maximum of 5L11 linear independent equations@~2!, ~3!,
~6!, and~7!#. Thus only one free external parameter remai
e.g., the total horizontal compression of the chain. The m
e

f

e
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,
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mum number of linear independent equations is obtai
only when each cylinder has at least one sliding conta
Otherwise, we are left with the problem of an indetermin
tion of contact forces, well known for higher-dimension
systems@1,10#.

B. Analytical calculations for constant compression

In the following, thetemporal evolutionof the system at
constant confining forces will be derived analytically. O
study will go beyond the analysis performed in Ref.@3#,
restricted to the steady-state properties forv̇5const andv̇ i
5const. In the steady state, collective rotational modes al
the chain are built up. For weak interparticle contact forc
an array with nonsliding cylinder-plane contacts is fou
~phase I!, followed by an array of cylinders also rotating i
the same sense, but with sliding contacts only~phase II!. If
the chain is long enough, at its end an array of cylind
operating in a counter-rotating mode~phase III! is built up.
Here these studies will be extended analyzing the temp
evolution of the system to its steady state. We focus on
experimental situation wherev̇p ,dv8/dt850. In order to
simplify the representation, the following notation
are introduced: NiªNi ,i 11 /(mg), TiªTi ,i 11 /(mg),
RiªNi ,L12 /(mg), and SiªTi ,L12 /(mg). In this notation,
the equations of motion~6! and ~7! reduce to

dv i8/dt8505Ni2Ni 212Si , ~8!

Ri512Ti1Ti 21 ~9!

~1/2!dv i8/dt85Ti1Ti 211Si , i 51, . . . ,L. ~10!

Without loss of generality, we will assume from now o
that all angular velocities are smaller than the velocity i
posed by the plane, i.e.,v i8<1. Thus from Coulomb’s law
@Eqs.~2! or ~3!# and Eq.~9! we obtain the following relation
for the cylinder-plane contact forceSi :

Si<m8~11Ti 212Ti !. ~11!

Equality holds for cylinders sliding on the plane, i.e.,
v i8Þ1 or dv i8/dt8Þ0. Insertion of Eq.~10! into Eq. ~11!
yields the useful relation

~1/2!dv i8/dt8<m81~12m8!Ti1~11m8!Ti 21 . ~12!

Possible solutions of the expressions~8!–~10! and ~12!
will now be discussed for two typical situations, where
contacts between neighboring cylinders are either sliding
nonsliding. In the steady state, phases I and II would co
spond to sliding interparticle contacts, and phase III to n
sliding interparticle contacts.

1. Sliding interparticle contacts

We consider a cylinderi, and assume sliding contac
with its neighbors, i.e.,Ti 2152mNi 21 and Ti52mNi .
This enables us to calculate, from Eqs.~8! and ~10!, the
following identity:

~m/2!dv i8/dt85~11m!Ti 212~12m!Ti . ~13!
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A combination of expressions~12! and ~13! yields, after
some elementary manipulations,

dv i8/dt8<4~Ti 212T* !, ~14!

with

T*ª2mN*ª2
m8

2

~12m!

12mm8
.

Equality is given if the cylinder slides on the plane, i.e., f
v i8,1. In this case, for a weak confining contact for
Ti 21.T* , a positive acceleration is obtained. The rotati
velocity approaches the valuev i851, where the cylinder is
rolling without friction on the plane. At this point, acceler
tion stops: the unique solution satisfying relation~14! is
dv i8/dt850. As can be easily checked, the assumption o
nonvanishing angular acceleration would always yield
opposite sign as solution. This shows clearly that phase
requiring a steady-state solution withdv i8/dt85const.0

@3#, has zero length in the casev̇5 v̇p50.
As shown in Ref.@3#, the possible steady-state solutio

(v i851,dv i8/dt850) can especially be achieved on the le
hand side of the array, if the external confining forceN0 is
weak enough. A closed array of particles in this steady s
is built up, and thereby constitutes phase I. Since in
phase the interparticle contacts are sliding, all forces
uniquely determined. From Eq.~13! we obtain an exponen
tial increase of the interparticle friction forces in phase I:

Ti5S 11m

12m D i 21

T1 with T15
2m~11m9!

12m
N0 .

For the first cylinderi 5L111 with contact forceTL1

,T* , the steady-state solution no longer exists. Acco
ingly, the number of particles in the phase I,L1, is given by

L1<12
ln~N0 /N* !1 ln~11m9!2 ln~12m!

ln$~11m!/~12m!%
.

For m5m9, this expression agrees with the result for a no
accelerated array in Ref.@3#. This result is exactly what one
expects intuitively: for weak confining forces, the particl
plane contacts dominate, and the system reduces the lo
energy by friction at these contacts. For strong horizon
confining forces, however, the interparticle contacts do
nate. Thus a counter-rotating behavior can be expected
this case.

2. Nonsliding interparticle contacts

We will now discuss possible solutions for a closed ar
of L3 counter-rotating particles indexed withi 5 i 0
11, . . . ,i 01L3. As consequence of the perfect counte
rotations, the interparticle contacts are nonsliding (v i ,i 11

r

5 v̇ i ,i 11
r 50 for i 011< i<L321). At the particle-plane con

tacts, friction is supposed to be mobilized. This enables u
determine all forces uniquely, especially since relations~11!
and ~12! hold with equality.

Although Coulomb’s law does not hold in this case,
unique relation between the contact forcesNi andTi can be
a
e
II,

te
is
re

-

-

of
l

i-
or

y

-

to

derived. Inserting identity~11! into Eq. ~8!, after summation
one obtains

Ni2Ni 0
5m8~ i 2 i 0!2m8~Ti2Ti 0

! ~15!

for i 5 i 011, . . . ,i 01L3. At the left boundary of the
counter-rotating array, we assume a sliding interparticle c
tact, Ti 0

52mNi 0
. The condition of a sliding contact at th

right boundary, constituted by a cylinder or the confini
wall, gives Ti 01L3

56mL3
Ni 01L3

. Here 6mL3
is the short-

hand notation of the product of the friction coefficientmL3

with the sign of the relative tangential velocity at the rig
end of the counter-rotating array. In fact, for a given val
6mL3

both contact forces are fixed, as can be deduced fr
Eq. ~15!:

Ti 01L3
56mL3

Ni 01L3
5

6mL3
$~12mm8!Ni 0

1m8L3%

16m8mL3

.

The contacts forcesTi 0
andTi 01L3

~instead ofmL3
) are con-

sidered here as the control parameters in the counter-rota
array.

The valuesTi of the interparticle tangential contact force
can be evaluated explicitly from the nonsliding condition

dv i 0111 l8 /dt85~21! ldv i 0118 /dt85:~21! lv̇,

valid for l 50, . . . ,L321. For the counter-rotating array
identity ~12! yields, after a few elementary manipulations,

Ti 01 l
% 5

~21! l v̇

4m8
1~2a! lS Ti 0

% 2
v̇

4m8
D , ~16!

where l 50, . . . ,L3. The notationsaª(11m8)/(12m8)
and Ti

%
ªTi1m8/2 have been introduced. So far, a simil

result for the steady state of an accelerated array was der
in Ref. @3#. Without acceleration, however, more effort
needed to determine the steady-state velocities in phase
In the following, we will show that in this case, a stead
state solution does not exist for sliding particle-plane co
tacts. Result~16! allows us to calculate the angular accele
tion v̇ from the control parametersTi 0

andTi 01L3
:

v̇

4m8
5

~21!L311Ti 01L3

% 1aL3Ti 0
%

aL321
. ~17!

It turns out that for given experimental parametersm, m8,
mL3

, and L3, a vanishing angular acceleration is achiev

only for one single value ofTi 0
. Accordingly, a steady-state

solution for the counter-rotating array withv i8,1 exists only
in singular cases.

Insertion of Eq.~17! in expression~16! yields the depen-
dence of the internal tangential contact forces on the
external parameters:

Ti 01 l
% 5~21! l$~12pl !Ti 0

% 1pl~21!L3Ti 01L3

% %, ~18!
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wherel 50, . . . ,L3. The weightsplª(a l21)/(aL321) in-
crease monotonically from zero atl 50 to their maximum
value of 1 at l 5L3. Accordingly, the quantities
(21)l Ti 01 l

% vary monotonically fromTi 0
% to their value for

l 5L3—with upper and lower bounds at the boundaries.
So far, the forces and accelerations have been determ

analytically for the counter-rotating array. Results~17! and
~18! enable us to check quantitatively the conditions un
which this array can be built up, a point neglected in pre
ous investigations@3#.

The first restriction follows from the requirement, that t
particles do not detach. Formally, this requires the positiv
of the plane’s reaction force:Ri>0 in Eq. ~9!. In Ref. @3#,
the exponential increase of theuTi 01 l u in expression~16!

gave rise to a restriction of the lengthL3. Expression~18!
shows instead that the lower and upper bounds of th
forces are governed bym8 and the control parametersTi 0
andTi 01L3

. Thus, as long asm8,uTi 0
u!1, the positivity ofRi

is guaranteed even for a long counter-rotating array
m8mL3

L3!1. This relation is especially valid forall lengths

L3 if a frictionless wall is chosenmL3
50.

Finally, it remains to check the necessary conditionuTi u
<mNi for nonsliding interparticle contacts. Making use
identity ~15!, this condition corresponds to upper and low
bounds forTi ,

Ti 01 l
min <Ti 01 l<Ti 01 l

max , ~19!

with Ti 01 l
min

ªTi 0
2 l @mm8/(12mm8)# and Ti 01 l

max
ª2@(1

2mm8)/(11mm8)#Ti 01 l
min . Clearly, a check of these cond

tions in expression~18! yields further restrictions on the fric
tion forcesTi 0

andTi 01L3
. Their formal derivation requires a

separate investigation of various cases. Accordingly, its g
eral representation here would be too involved. We h
found that it is sufficient to restrictTi 01L3

such that relation

~19! holds for l 5L321,L3. In particular, the latter case re
quires thatmL3

<m. For small values ofl, only in a restricted

range of values forTi 0
no contradictions of the nonslidin

conditions appear. The most restrictive conditions are
tained for a long counter-rotating array, wherep1'0:
2Ti 011

max <Ti 0
1m8<2Ti 011

min . This yields, in particular, an

estimate of the upper bound ofTi 0
:

Ti 0
<T** 5T* 1

m~m8!2

2~12mm8!
. ~20!

The boundT** is slightly larger thanT* after expression
~14!. For small friction coefficients, both values become
distinguishable. Thus our intuitive expectation of a count
rotating behavior at the right of the array building up phas
is confirmed.

To summarize, a counter-rotating array can be expec
on the right-hand side of the chain, but with a nonvanish
angular acceleration@Eq. ~17!# when the particle-plane fric
tion is mobilized for all cylinders. Accordingly, particle
with positive acceleration achieve an angular velocityv8

51. At this point, a steady-state solution withv̇50 no
ed

r
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-
-
I

d
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longer contradicts expression~17!. Due to the additional
nonsliding cylinder-plane contacts the forces are no lon
uniquely determined in this counter-rotating steady st
~phase III!. We conclude that in phase III of a nonaccelerat
array only two angular velocities exist:v i8561.

C. Numerical simulations

In the case of fluctuating confining forces, Eqs.~6! and~7!
can no longer be treated analytically. However, their num
cal integration is a complicated task when the relative t
gential velocities vanish at several contacts. In this situat
all combinations of cases~a! and~b! discussed after Eqs.~6!
and ~7! have to be tested numerically. The fast converg
contact dynamicsalgorithm was shown to be useful for th
determination of the steady state of the system at cons
nonvanishing accelerationv̇Þ0 @3#. In these numerical stud
ies, a unique solution was always found. This observat
has important consequences for the stability of nonslid
contacts. A nonsliding contact is stable if the solutionv i j

r

5 v̇ i j
r 50 is approached from both sides:v i j

r 501⇒ v̇ i j
r ,0

andv i j
r 502⇒ v̇ i j

r .0. Here the notation 01 (02) is used for
an infinitesimal positive~negative! number. Clearly, the
same conclusion holds in the casev i j

r 50 andv̇ i j
r Þ0. Thus a

nonsliding contact is always obtained as the unique solut
and can be regarded as an attractive fixed point as well. T
is valid as long as the signs of the relative velocities at
other contacts do not change. These considerations have
portant implications in the numerical simulations of the sy
tem. Performing a rough numerical integration of the eq
tions of motion~6! and ~7! with equidistant time stepsdt8,
the situationv i j

r 50 will almost never occur. Nevertheles
stable nonsliding contactŝi j & can always be detected from
an oscillatory behavior of the angular velocities around
fixed pointv i j

r 50. Furthermore, the simple ansatz

Ti j 52m i j sgn~v i j
r !Ni j

is sufficient for a determination of the friction forces, yield
ing an enormous simplification for the numerical approa
~see Ref.@11#!.

First, we have tested this numerical integration proced
for a system consisting of only one cylinder. In its stea
state, the cylinder simply rolls on the plane without frictio
The numerical results are illustrated in Fig. 5 for a horizon
compression ofN01N154.

Starting the numerical integrations with a negative ro
tion velocity at t850, the cylinder’s rotation is positively
accelerated@dv18/dt852m8 „cf. Eq. ~14!…# until v18.1. Just
having passed this fixed-point solution, the accelerat
changes sign, and the expected oscillations of the ang
velocity around the valuev1851 can be observed. Clearly
their amplitude decreases with the time step, since the fl
tuations of accelerations and forces are independent of
value of dt8. In particular, the friction force between th
particle and plane changes its direction. Thus, a numer
integration for a fixed value ofN0,m8 would yield a nega-
tive horizontal acceleration of the particle whenv i8.1. For
longer chains with several particles with fixed points atv i8
51, the value ofN0 would have to be chosen even larger
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order to guarantee the close-packing condition of the ch
Thus fixingN0 as a control parameter will allow one to co
sider only highly confined chains. The applicability of th
numerical procedure is less restricted by choosing the sum
both confining forces,N01NL , as an external parameter in
stead.

How the algorithm works if the system approaches s
eral nonsliding contacts is presented for a chain with t
counter-rotating cylinders. Figure 6 again shows a clear
cillating behavior around the fixed-point solutionsv1851
and v181v2850. The fluctuations of the angular velocitie
larger than for the system in Fig. 5, have been reduced by
choice of smaller time steps. Figure 6 shows, that first
counter-rotation of the particles is established. The rotati
are then collectively accelerated until the first cylinder si
ply rolls on the plane. The numerical value of this accele
tion, which can be easily estimated from the average slop
in good quantitative agreement with the analytical predict
derived from Eq.~17!: dv18/dt852m8250.18.

Typical results for a chain of four particles are shown
Fig. 7 for two different horizontal compressions. The osc
lating behavior of the curves has been reduced here by
choice of a relatively small integration step ofdt850.01. At

FIG. 5. Temporal evolution of the rotation velocity of one pa
ticle (L51) confined by the horizontal compressionN01N154.
The friction coefficients arem850.3 andm950.

FIG. 6. Temporal evolution of the rotation velocities of tw
particles (L52) confined by the horizontal compressionN01NL

54. The friction coefficients arem50.4, m850.3, andm950.
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both compressions, the first cylinder is positively accelera
until it simply rolls on the plane, whereas a counter-rotati
array is built up by the remaining three cylinders. In t
counter-rotating region, the rotations of the cylinders are
celerated until the positively accelerated particles roll on
plane without friction. Again, the numerically obtained a
celerations are in excellent quantitative agreement with
analytical result@Eq. ~17!#. In particular, our prediction of
only two angular velocities in the steady state,v i8561, is
confirmed numerically. The values of the horizontal co
pression determine the spatial arrangement of the rota
velocities. At low confining forces the first two cylinders ro
on the plane without friction. At high compression all pa
ticles act in a counter-rotating mode.

We conclude that the simple molecular-dynamics co
@11# presented here yields reliable results for the tempo
evolution of the angular velocities as well as for the stea
state properties. The same rotation patterns are obtained
regularized version of Coulomb’s law, as used in Ref.@4#,
with reduced fluctuations of the angular velocities due to
regularization of the friction forces in the vicinity of vanish
ing relative contact velocities.

The different steady-state patterns with only two pha
~I, and III! are determined by the length of the first phase,L1.
Each value ofL1 corresponds to a certain range of the ho
zontal compression of the chain.

The real transition timeTtrans to the steady state can b
simply obtained from its valueTtrans8 in the simulations:

FIG. 7. Temporal evolution of the rotation velocities of fou
particles (L54) confined byN01NL51.4 ~top! and 1.6~bottom!.
The friction coefficients arem50.4, m850.3, andm950.
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Ttrans5Ttrans8 vp /g. In the experiment, the velocity o
the basal plane is small,vp,1024 m/s, yielding Ttrans

exp

,Ttrans8 31025 s. Numerically, we have observed that typ
cally Ttrans8 !103; thus the transition time in the experime
can be expected to be very short:Ttrans

exp !1022 s.
We now turn to a numerical investigation of the chain

reaction on temporally fluctuating horizontal compressio
To this end, we assume periodic oscillations of the confin
forces:

N01NL5^N01NL&1A cos~2pnt8!.

As a consequence, the horizontal compression switc
between the ranges of the different steady-state pattern
constant compression. Thus simple oscillations betw
these steady states can be expected for frequencies w
periodicity time larger thanTtrans8 . For higher frequencies
the situation is less obvious. We have studied the situa
for the chain in Fig. 7, choosingA50.2 and two different
average compressions. For all frequencies, we observed
after a very short transition time, the first particle rolls on t
plane withv151, and the three remaining cylinders act in
counter-rotating mode. Thus it is sufficient to consider
temporal evolution of one of the counter-rotating cylinder

In Fig. 8, the temporal evolution of the angular velociti
of the second cylinder is represented for three different
quenciesn. For a low frequency,Ttrans8 !1/(2pn) ~top!, its
angular velocity is observed to switch betweenv2851, when
N01NL is small, andv28521 for largeN01NL . Accord-
ingly, the whole chain switches between the two differe
steady states in Fig. 7. This is exactly what was predic
above. The difference of the value of the average comp
sion, ^N01NL&, only slightly affects the time the chain re
mains in its different steady-state patterns.

FIG. 8. Temporal evolution of the rotation velocities of the se
ond of four particles (L54) confined by N01NL5^N01NL&
10.2 cos(2pnt8), with straight lines for̂ N01NL&51.5 and dotted
lines for ^N01NL&51.58. The friction coefficients arem50.4,
m850.3, and m950. The integration steps are chosen asdt8
50.015.
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The situation changes drastically, when the periodicity
the external compression approachesTtrans8 ~center of Fig.
8!. The particle remains mainly in its dominant steady st
@v2851(21) for ^N01NL&51.5(1.58)#. The transition time
is now too long for a switch between these two states. T
effect becomes more pronounced for a higher frequency~see
the bottom of Fig. 8!. Here, the oscillations of the compre
sion only provoke slight perturbations of the angular velo
ties.

To summarize, the effects of temporal oscillations of t
horizontal compression are largest for small frequenc
They diminish with increasing frequency.

In Fig. 9, the polar representation of the rotation ang
for the situation of Fig. 8 is shown witĥN01NL&51.58. A
qualitative comparison with the feature of the experimen
curves in Fig. 2 shows that the experimentally observed
cillations of the rotation angle at the right end of the cha
can in fact be recovered theoretically for the smallest f
quency 2pn50.02.

We have performed numerical simulations for a long
chain with several different steady states. The results
shown in the polar representation in Figs. 10 and 11. T
effects are only small for the higher frequency in Fig. 1
whereas convincing agreement with the typical features
the experimental results is found for small values ofn ~Fig.
11!. In Fig. 11, not only the oscillations of the rotation angl
are clearly detected. An intermediate behavior can also
observed fori 53. To summarize, in the long-time behavio
oscillations of the confining forces may have an importa
influence on the rotational patterns as long as the confin
forces pass the threshold values between different ste

FIG. 10. Rotation angles as a function oft8 for a chain of eight
cylinders with friction coefficientsm5m850.2 andm950. The
external compression isN01NL51.810.1 cos(2pnt8), with 2pn
5531023. The width of theNt8553105 integration steps isdt8
50.033.

-

FIG. 9. Polar representation of the temporal evolution of
rotation angles for the same chain as in Fig. 8, confined byN0

1NL51.5810.2 cos(2pnt8).
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state patterns. This influence is largest when the time
compression remains in the range of one steady-state pa
is larger than its typical transition time. Our numerical int
grations show that, at high frequencies, when these times
smaller than the typical transition time, the chain choo
one dominant pattern. In this case, the fluctuations of
compression only yield slight perturbations of the rotati
velocities6vp at this state. The amplitude of these oscil
tions reduces with increasing frequencyn of the compres-
sion’s oscillations. At low frequencies, when 2pn
!1/Ttrans8 , the chain ‘‘switches’’ between different stead
state patterns. These switches evoke changes of the par
the length of the counter-rotating array~phase III!. Conse-
quently, the rotation velocities of the cylinders at the end
the chain change sign, yielding the experimentally obser
oscillations of the rotation velocities~cf. Fig. 2!. The inter-
mediate behavior in the middle of the chain can then
understood as a superposition in time of phases I and II

We conclude that for irregular fluctuations of the com
pression, the low-frequency variations mainly determine
variations of the rotational patterns. Their high-frequen
contribution only evokes slight perturbations of the domin
behavior.

IV. EXPERIMENTAL RESULTS II:
TEMPORAL CORRELATIONS

In Sec. III, we showed that the striking unusual propert
of the experimental data can be attributed to slowly vary
temporal fluctuations of the horizontal compression. This
happen whenever the time scale of these slow fluctuation
much larger than the transition timeTtrans of the experimen-
tal system. Based on our numerical results, the typical tr
sition time of the system could be estimated to be very sh
Ttrans!1022 s; thus all fluctuations with a larger time sca
yield superpositions of different steady-state patterns.

In this section, we will analyze temporal correlations
the experimentally observed fluctuations of the rotat
angles. Such an analysis requires a higher precision of
angle measurements. The precision is restricted by the im
analysis. Zooming in on the front of only one cylinder of th
chain, we obtain a reduced maximum error of 0.4° for
measured angles. A typical experimental result for the cy
der i 57 of a chain ofL59 cylinders is shown in Fig. 12
The chain has been confined by a cardboard block of 23.
All the other experimental parameters are the same a
Figs. 2 and 3.

The irregular shape of the curves reminds one of a sig
obtained from a stochastic process. Whereas the total r
tion anglesQ(t) show a nonstationary behavior, a stationa
process seems to fit the short-time rotation anglesDQ(t)
5Q(t1Dt)2Q(t) between two snapshots (Dt59 s).
These ‘‘instantaneous’’ rotational measurements corresp

FIG. 11. The same as Fig. 10 for 2pn51023.
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to running averages of the velocities in this time interval.
order to compare directly with the theory, the instantane
angular velocities of the cylinder would be needed. The
velocities, however, are not accessible in the experime
measurements. Therefore, the moving averages will be
basis of our analysis. The maximum rotation veloc
(uvpu.0.34°/s) corresponds to a rotation angle ofDQ.
63.1° between two snapshots. This angle is only rarely
served in the experiment. However, as discussed at the
of Sec. III, instantaneous rotation velocities much sma
than6vp can be expected to give a negligible contributio
Thus the experimental data presented in Fig. 12 give ris
several switches of sign of the rotation velocity in the tim
interval Dt59 s.

In order to gain a deeper insight into the temporal cor
lations of the experimental data, we have computed th
autocorrelation function as well as their power spectru
These functions offer excellent statistical tools for the det
tion of characteristic properties of an irregular signal.

The autocorrelation functionAf of a time seriesf (t i)
measured in equidistant time stepsdt at times t i , i
51, . . . ,N, can be estimated from

Af~t5kdt !.ck /c0 ,

with

ck5
1

N2k (
i 51

N2k

@ f ~ t i 1k!2 f̄ #@ f ~ t i !2 f̄ #. ~21!

Here f̄ 5(1/N)( i 51
N f (t i) is the sample mean off ~cf. Ref.

@12#!, andck is the estimated autocovariance.
A hidden periodicity of an irregular signalf can be de-

tected from peaks ofAf(t) at integer multiples of its period
icity time. On the other hand, for random values off (t),
generated by a stationary uncorrelated process,Af(t) van-
ishes for all valuest.0. At t50, one always obtains
Af(0)51.

FIG. 12. Time dependence of the experimentally measured
tation angles of cylinderi 57 for a chain withL59. Top: total
rotation angles; bottom: rotation angles between two snapshots
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The autocorrelation function estimated from the instan
neous rotation angles in Fig. 12~bottom! is represented as
function of t in Fig. 13. We have restricted our represen
tion to relatively small values oft compared with the tota
measuring time for which our estimate is expected to g
reliable results. For the mean rotation velocities between
snapshots, no significant correlations can be detected ft
>Dt.

Clearly, a more or less regular oscillating behavior can
excluded on the basis of these results. The small value
ADQ for t>dt in Fig. 13 more likely suggest that one thin
in terms of random velocities generated from a station
stochastic process~random walk!. The mean error of an es
timated autocorrelation which theoretically vanishes for
lags k.q can be calculated from Bartlett’s approximatio
@13#. It enables us to detect systematic deviations from
random-walk behavior. This error, represented as a gray
around zero, covers most of the calculated nonvanishing
ues in Fig. 13, and no apparent contradiction to our hypo
esis can be detected. Moreover, we can see thef 22 variation
of the power spectrumSf5uQ̃( f )u2,

Q̃~ f !5
1

TE0

T

dt ei2p f tQ~ t !,

shown in Fig. 14, typical behavior for a random walk@14#.
We conclude from our results that the temporal fluctu

tions of the horizontal confinement of the chain can best

FIG. 14. Power spectrum of experimental data presented
Fig. 12.

FIG. 13. Estimated autocorrelation function of the instantane
rotation angles presented in Fig. 12~bottom!.
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described in terms of a stationary stochastic process. Wh
ever the time between two events is not of the order
Ttrans, this corresponds to a random superposition of
steady-state rotation velocities6vp .

In a random-walk system, the mean squared displacem
increases linearly in time~cf., e.g., Refs.@15,16#!, i.e.,

^@Q~ t !2^Q~ t !&#2&52Dt.

The slope of this function is completely determined by t
diffusion constantD, from which further insight into the
‘‘microscopic’’ properties of the process can be gained. T
stationarity of the process implies that this relation also ho
for DQ(Dt). We have estimated the variance ofDQ(Dt)
from the autocovariancec0 in expression~21!. The result,
presented in Fig. 15, shows a remarkably linear increase
to Dt'300 s. For larger times, the slope is increased o
by statistical deficiency, not by real physical correlation
The slope of the straight line is 2D'0.04 degrees2/s. In
order to exploit the information obtainable from this valu
assumptions on the temporal distribution of the rand
events have to be made. Since no further information
available, we assume the random events at random tim
With this assumption we follow the standard lines for diff
sion by collisions in an ideal gas. For further details see, e
Ref. @16#. Now the diffusion constant can be derived fro
the ‘‘microscopic’’ processes. The result,

D5~v22v̄2!t̄, ~22!

relatesD to the mean time interval between two events,t̄,
and the variance of the instantaneous rotation velocities,v2

2v̄2. Furthermore, our assumption of random times for
events enables us to derive an exact expression for the
tribution of time intervalst between two events@16#:

P~t!5
1

t
exp~2t/ t̄ !. ~23!in

s

FIG. 15. Estimated variance of the short-time rotation ang
DQ ~degree! as a function ofDt.
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754 PRE 62SCHLIECKER, KHIDAS, AMMI, AND MESSAGER
From the slope in Fig. 15 andv22v̄2<vp
2 (v̄.0), we

obtain t̄>0.16 s. Making use of expression~23!, we can
check now the consistency of our assumptions. The perc
age of time intervals shorter than a very large transition ti
of 1022 s is small ('6%), thus strongly supporting the
existence of mainly two instantaneous rotation velocit
6vp in the experiment. On the other hand, the percentag
events on a time scale larger than the distance between
snapshots (t>9 s) is negligible (;10224%). This explains,
why the maximum rotation angle of63.1° cannot be de-
tected in Fig. 12.

It appears clearly that the length of phase I oscillates d
ing time. The total measured rotation angle of each cylin
is the result of the superposition of different steady sta
~Fig. 1!, with perfectly known spatial correlations. The fir
particles are in phase I and are rolling with the same velo
1vp , the first particle in phase III has a velocity2vp , and
the velocities of the others are alternating between1vp and
2vp .

So, with this description, the distribution of lengths
phase I is completely determined by the knowledge of
total anglesQ(n) of each cylindern51, . . . ,L during the
experiment~Fig. 16!. We can easily compute the fraction
time of each steady state giving the length distribution
phase I.

Our hypothesis of instantaneous steady-state veloc
gives us a few recurrence relations between the diffe
time fractions:t I(n), t III

1 (n), and t III
2 (n), respectively, are

the fractions of time during which the cylindern is in phase
I, in phase III with the velocity1vp , and in phase III with
the velocity2vp . Qmax is the total rotation angle of a cyl
inder which always is in phase I. Then we obtain

Q~n!

Qmax
5t I~n!1t III

1 ~n!2t III
2 ~n!, ~24!

with

t I~n!1t III
1 ~n!1t III

2 ~n!51 ~25!

and

t III
1 ~n!5t III

2 ~n21!. ~26!

FIG. 16. Measured total rotation angles for a chain of 14 cy
ders.
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With the t I(n) values we can deduce the time fractionp(L1)
when phase I has a length ofL1 cylinders.p(L1) is simply
given by

p~L1!5t I~L1!2t I~L111!. ~27!

The length distributionp(L1) of phase I for the experimenta
data presented in Fig. 16~14 plexiglas cylinders,vp
5125 mm/s, 7.5 g confining mass! is shown in Fig. 17.

We conclude that the results of our numerical integratio
for oscillating confining forces, together with the analysis
the temporal correlations of the experimentally measured
tation angles, strongly support our hypothesis—that the
expected properties of the experimental data can be tra
back to random superpositions of different steady-state r
tion patterns. There is strong evidence that the chain p
forms acollective random walk.

V. CONCLUSIONS

To summarize, the striking unexpected properties of
experimental measurements can be—qualitatively
quantitatively—attributed to slow varying temporal fluctu
tions of the chain’s horizontal confinement. In detail, w
showed, by means of rigorous analytical derivations, that
steady state of the perfect nonaccelerated system has
two rotation velocities,6vp . Only two rotational modes
phases I and III, exist in this case. The molecular-dynam
code developed here shows an excellent quantitative ag
ment with the derived rigorous analytical results. From o
numerical simulations, the typical transition time to th
steady state could be estimated to be very short for the
perimental situation. Slowly varying oscillations of th
chain’s horizontal compression yield temporal superpositi
of different steady-state patterns. For periods smaller t
the transition time of the system, the rotation patterns
only weakly affected by these external fluctuations: t
dominant steady-state pattern is obtained with slight fluct
tions of the rotation velocities. The amplitude of these flu
tuations diminishes with increasing frequency. The typi
features of our experimental measurements are reprod
by numerical simulations with slow-frequency oscillations
the confining forces.

Further insight into the experimentally measured fluctu

-

FIG. 17. Length distributionp(L1) of the phase I for the experi
ment presented in Fig. 16.
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tions of the rotation velocities could be gained from a co
putation of the temporal autocorrelation function and
power spectrum. The temporal correlations are best
scribed by a one-dimensional random walk of the cylinde
Based on our estimated diffusion constant, short-time fl
tuations are found to give a small contribution only, strong
supporting the supposition that the measured data are a
sequence of temporal superpositions of different steady-s
patterns.
v.
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