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Collective response of an array of rotating particles to fluctuating confining forces
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We study the influence of fluctuations of confining forces on the rotation patterns in a dense array of
cylinders. Our theoretical studies are motivated by new results from detailed time-resolved experimental
measurements. In order to calculate the system’s evolution in time at each moment, a molecular-dynamics code
adapted to the system is developed. The numerical procedure is tested by a comparison with rigorous predic-
tions derived analytically. The chain’s reaction on oscillating confining forces is analyzed numerically for
different typical cases. Our theoretical results reproduce the striking features of the experimental data. A
guantitative analysis of the experimental data is performed by a computation of their power spectrum and of
spatial and temporal correlation functions. From our comparison of the theoretical and experimental results we
conclude that the experimental rotation patterns result of random superpositions of different steady-state
patterns(“‘collective random walk”).

PACS numbdps): 45.70—n, 62.20—-x, 81.05.Rm

[. INTRODUCTION In this paper, we will present a detailed study of the cyl-
inders’ rotations for fluctuating confining forces. In particu-
Force distributions and the resulting frictional propertieslar, a theoretical approach adapted to the experimental situ-
of dense granular media are subjects of great int¢feg].  ation is developed.
When a dense packing of spherical particles is moved with- The paper is organized as follows. In Sec. Il, the experi-
out deformation on a sliding plane, collective rotations aremental setup is shortly introduced. Typical features of the
built up in order to reduce the frictional resistance: at a con€xperimental system will be presented.
tact between two particles, no dissipation takes place, when Theoretical calculations are presented in Sec. Ill. A theo-
they simply roll against each other. In most nonartificial retical description of the system begins with a representation
dense packings, however, these rotations are frustrated due@bthe equations of motion in Sec. Il A. Rigorous results for
geometrical constraints. In two-dimensional disk assemblieghe system’s evolution at constant external control param-
whenever three rotating disks are in mutual contact, at leagters are derived analytically in Sec. Il B. In order to study
one of the three contacts has to slide. This frustration ofhe system’s reaction on fluctuating compressions, in Sec.
rotations has an important influence on the organization ofll C a simplified molecular-dynamics code is developed.
the particles’ rotations. The temporal evolution of the rotations is determined nu-
The simplest system with completely frustrated rotationgmerically for constant control parameters first. The numeri-
is a one-dimensional confined array of cylinders on a slidingcal results are checked by a quantitative comparison with the
plane, moved at constant acceleration in its main directionfigorous analytical predictions derived. The typical transition
Theoretically, for a perfect system, the organization of thelime of the experimental system is estimated, and all steady-
cylinders’ rotations in their steady state is well understoodstate rotation velocities of the cylinders of the array are de-
[3,4]. Less is known about the temporal evolution of thetermined. Then the system’s reaction to fluctuations of the
system. This did not seem to be important, since measuréompression of the chain is determined for typical cases. The
ments of a first experimental realization of the system werdumerical results are compared with the experimental data.
found to be in convincing agreement with theoretical steady- [n Sec. 1V, the temporal fluctuations of the experimentally
state prediction$5]. measured rotation angles are analyzed quantitatively by
We refined the experimental setup in Ré&f. Our experi- ~means of their power spectrum and temporal autocorrelation
mental device now enables us to investigate the tempordHnctions. The results are found to be best described by a
evolution of the rotational motion of the cylinders in greaterstationary stochastic process for the random velocitias-
detail. It has turned out that temporal fluctuations of externaom walk. From this hypothesis, further information about
control parameters due to imperfections of the experimentdhe experimentally nonaccessible short-time behavior of the
system have an interesting and non-negligible influence ofiuctuations is derived.
the rotational pattern$]. Due to these fluctuations, a simple

comparison with the steady-state properties of the perfect Il EXPERIMENTAL RESULTS |-

theoretical system could not be performed. They instead re- SPATIAL CORRELATIONS

quire a theoretical discussion, taking into account the tempo-

ral fluctuations of the external control parameters. The system investigated here is shown schematically in

Fig. 1: a close packed chain bfhard-core cylinders is based
on a horizontal plane moving with a constant veloaity
*Present address: MPI for the Physics of Complex Systents-No from left to right. The array, indexed with=1, ... L, from
nitzer Str. 38, 01187 Dresden, Germany. left to right, is confined by horizontal forces at both ends.
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FIG. 1. The system considered here: a close-packed array of 0
hard-core cylinders, confined by horizontal forces at the end of the ;jé 0.5

chain, located on a horizontally moving plane.

Friction at the interparticle contacts and between the cylin- ~0.75

ders and the plane induces a complex behavior of the rota-

tional motion of the particles. -1 . P . . P .
Theoretically, at constant confining forces and shearing r2 3 4 5 6 7 8 9 10

velocity, the system reaches a steady state with collective !

rotational modes after a transition tintef. Fig. 1). The array

of cylinders is subdivided into two spatial domains. In the FIG. 3. Spatial correlations between the short-time rotation

first domain, on the left hand side, all the cylinders rotate inangles of neighboring cylinders.

the same sense imposed by the motion of the plane. In this

domain, the rotational velocities of neighboring cylinders aretion angles for neighboring cylinders.

perfectly correlated. In the second domain, neighboring cyl- An overview of the spatial correlations between rotations

inders are counter-rotating, and their rotational velocities aref different cylinders can be obtained from the cross-

perfectly anticorrelate3]. correlation function. This function constitutes a further tool
For the investigation of the experimental system, the cylfor a characterization of a counter-rotating behavior. The

inders’ rotation angles are obtained from marks on theicross correlation between the quantitigsand f; of two

fronts. We measure them automatically by a CCD cameragylindersi andj is defined as

connected to an image analysis with a time séepln order

to gain detailed insight into the time evolution of the system,
5t has been chosen as small as posdiéle f dt f;(H)f;(t)
A polar representation of the measured angles in Fig. 2 Cs(i,j)= , 1)
gives an overview over the spatiotemporal behavior of the \/f dt f2(t) \/f dt’ f2(t")
whole array: the radius and polar angle represent the time : )

and rotation angle of each cylinder, respectively. The centers
of the different circles represent the spatial positions of thevhere the notatiofdt- - - :=fJ(dt/T) . . ., with the total in-
cylinders. In Fig. 2, experimental results are represented for tegration timeT, had been introduced. Fdg(t)==f(t),
total run of 6870 s withSt=9 s. We have chosen a chain of one obtainsCy(i,j)==1, reflecting strong(anticorrela-
ten Plexiglas cylinders with radR=12.5 mm and masses tions.
m=56.1 g, rolling on a metallic plane with,=75 um/s. In order to estimate the correlations between the angular
The chain has been confined by a cardboard block of 7.5 gelocities of different cylinders, we have computed this func-
on the left and a fixed wall on the right. Figure 2 shows thattion for the short-time rotation angle$(t)=0(t+ At)
the left cylinders mainly follow the motion of the plane, —©(t) of neighboring cylinders from the experimental data
whereas irregular fluctuations of the rotation angles can bef Fig. 2. Theoretically, this spatial correlation function is
observed on the right hand side. Due to these fluctuationsliscontinuous: it is equal te-1 in the first domair(cf. Fig.
the relative tangential velocities at the contacts can hardly b#&), with a jump to—1 in the counter-rotating domain. The
estimated, neither from this representation nor from the totaéxperimental result for neighboring cylindefS, ¢ (i,i+1),
rotation angles as proposed in R&]. Furthermore, the time is represented in Fig. 3. Whereas the strong correlations for
interval 5t between the two measurements is restricted by=<3 confirm our observations in Fig. 2, the strong anticor-
the precision of the measured anglebout1®). This pro- relations at the right hand side quantify a nearly perfect
hibits a direct approach to instantaneous angular velocitiexounter-rotation. An intermediate behavior is given for 3
Nevertheless, as shown in RéB], our detailed measure- <i<7. This unexpected behavior and the continuous de-
ments allow us to deduce a counter-rotating behavior at therease at the right hand side will be analyzed here.
end of the chain, looking closer at the evolution of the rota- The experimentally observed strotenticorrelations be-
tween the short-time rotation angles of neighboring cylinders
- N A\ for small (large i are in good agreement with predictions
@ @ @ @ @ @ @ @ @ @ from the steady-state analysis performed in R8f. How-
’ ever, neither the intermediate behavior in between nor the
angular fluctuations at the end of the array can be obtained
FIG. 2. Polar representation of the temporal evolution of thefor constant horizontal compression, as supposed in[Rgf.
rotation angles for the different cylinders. The cylinders’ positionsNevertheless, as shown in Rg8), these unexpected experi-
are represented as circles. The distance from a point of a curve t@ental features can be easily derived from the hypothesis of
the center of its circle represents the time. temporal superpositions of different steady-state patterns. In



746 SCHLIECKER, KHIDAS, AMMI, AND MESSAGER PRE 62

Ref. [6], it was argued that these superpositions could be a 0;

consequence of fluctuations of the horizontal compression of 4a—

the array due to imperfections in the cylindrical shape of the

particles. t..

. Li+1

ll. THEORY — -

Li+1
In this section, we will present a quantitative theoretical t

investigation of the system under temporally fluctuating hori-

zontal confining forces. To this end, the equations of motion t

for cylinders presented in Sec. Il A will be integrated nu- n T LL+2

merically. Such an analysis goes beyond the steady-state bL+2

analysis for constant forc€8,4], since it requires a determi-

nation of the system’s evolution in time at each moment. In FIG. 4. Normal and tangential contact vectors of tttecylin-

Sec. 11l B, this evolution is studied first analytically for con- der-

stant confining forces. The case of fluctuating confining

forces will then be treated numerically in Sec. Ill C. To this  Friction forcesat the interparticle contacts play an essen-

end, the numerical simulations of the equations of motior{ial role in the rotational motion of the CylinderS. A nonvan-

will be performed with a simple molecular-dynamics code.ishing relative tangential velocity|;=v{-+v| at a contact

The numerical code developed here is checked by a quantpoint(i,j) implies a friction force, which igantjparallel to

tative comparison of the simulation results with the analyti-the tangential vector at the contadt;=T;;t;; . Following

cal solutions from Sec. Ill B. Representative numerical re-the friction law of Coulomi{7], the strength of this force is

sults for oscillating horizontal compressions will be proportional to the normal forc;; . As pointed out in Refs.

presented and discussed at the end of this section. They di2.8], a closed contacij) remains sliding even at vanishing

compared with the experimental observations. relative tangential velocity ib{;#0. This leads to a gener-
alized version of Coulomb’s law for closed contacts in a
A. Equations of motion dynamical systeni8],
We consider a dense horizontal packing lofparallel ; .
identical hard-core cylinders with radi# and massem (see Tij=—pijlsgrivi)) + 5v{j 0 Sgrwij) INij , 2
Fig. 1). The cylinders, based on a moving horizontal plane,
are indexed from left to right with=1,... L. The evolu-  for v{;#0 or vj;#0. Here we have introduced the signum

tion of the cylinders’ rotations is governed by the forceSfynction sgnk) :=|x|/x (x#0), 0(x=0). Whereas the first
acting on the particles. The gravitational force of each cylinterm in expressiori2) represents Coulomb’s friction law in
der isG=(0,—mg), whereg=9.81 m/s is the gravitational jts original version[7], the second term was suggested in
acceleration. Further external forces are applied to the syef. [8]. The positive friction coefficientg;; are supposed
tem vertically from the reaction of basal plane, and horizonto depend on the contacting materials, but not on the relative
tally from the confining forces at both ends. The geometry ofangential velocities as, e.g., in RE8]. They areu between
the close packing is not affected during the system’s evoluyyo cylinders, " := wo;= w +1 between the cylinders and
tion. At the contacts, friction forces are mobilized when, duethe confining particles at the ends of the chain, and
to the motion of the basal plane and/or the rotations of the.:,“i L., between the cylinders and the plane. Expression
cylinders, nonvanishing relative tangential velocities appear) is valid only for sliding contacts, i.e., if the relative ve-
In order to simplify the formal representation in the fol- |ocity or acceleration does not vanish. Otherwise, the contact

lowing, the horizontal confining forces are considered to b&yecomes nonsliding, and the tangential contact force has to
exerted from particles with indicés=0 (left) andi=L+1  gatisfy only the relation

(right). The bottom will be represented as particle with index
i=L+2. At interparticle and particle-plane contacts, we de-
fine the unit-distance normal vectarg= —n;; and their cor-
responding tangent vectotg=n;;<(0,0,1), as represented
in Fig. 4.

At the contact between two particlesand j, a normal
force parallel ton;; ,N;; =N;;n;;, with N;;=0 appears. Our
analysis will be restricted to cases where the geometry of th
packing is not affected by the evolution of the system.
Clearly, this condition allows one to consider only a re-

We now turn to theequations of motiogngoverning the
system’s evolution in time. For each cylindex1, ... L,
we have two translational equations of motion and one rota-
tional equation of motion for its translational velocityand
ngular velocityw; . The equations of motion for the cylin-
ers’ translational velocities read

stricted range of values for the external forces. L+2

At interparticle contacts, tangential velocities of the cyl- mv,=G+ >, xXif(Ty+Nyp), i=1,...L. (4)
inders’ surfaces due to their rotational motion are denoted as j=0
vi=vit;;, i=1,... L. They are simply related to the angular

velocities w; : vi=Rw;. For the external contacts, we as- Here we have introduced the characteristic functign
sumevh=v!,,=0 andv| , ,= —v,, wherev, is the veloc-  Xij =1, if the particlesi andj are in contact; otherwlsgij
ity of the moving plane. =0. The condition of closed contacts requires thigtv
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—(v 0) for all cylinders. The rotational equations of motion
do not explicitly depend on the normal contact forces:

L+2

(|/R)c’oi=i§0 xijTy, i=1,...L.

©)

The moment of inertid of a cylinder with homogeneous
mass distribution is given bly=mR%/2. Note that the cylin-
ders considered in Eg$4) and(5) range fromi=1,... L,
whereas the summation ovéralso includes external par-

we are concerned with cylinders of identical masse# is
convenient to measure all forces in units ahg.
Introducing the dimensionless forceG/(mg)=(0,—1),
Tij/(mg), andN;;/(mg), Egs.(4) and(5) read

L+2

dvi G Tij NII )
dr mg jEX"(mg mg/ "Lk ©
and
d(l), L+2 T

i 1) ;
19 G — i=1,...L, 7
dt’ 120 Ximg "

with the dimensionless quantities:=tg/v,, v{:=v;/vy,
andw/ :=wR/v,.

In this paper, we will focus on the experimental situation

with v,=const. anddv{/dt’=0. Thus the temporal evolu-
tion of the system is determined by thevalues for the
cylinders’ angular acceleratiomko//dt’ only. They depend
on the tangential contact forcésee expressioli7)]. For a
total number ofN'! contacts, there areN®! values of the
contact forces\;; andT;; . Consequently, the analysis of the

system’s evolution in time requires the determination of

these N''+L quantities from the equations derived.
The equations of motioft¥) and(5) or (6) and(7) form a

set of L linear equations. They are integrated starting with

an initial configuration of tangential velocitigs!}. For all
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mum number of linear independent equations is obtained
only when each cylinder has at least one sliding contact.
Otherwise, we are left with the problem of an indetermina-
tion of contact forces, well known for higher-dimensional

systemd1,10].

B. Analytical calculations for constant compression

In the following, thetemporal evolutiorof the system at
constant confining forces will be derived anaIyticaIIy Our

=const. In the steady state, collective rotational modes along
the chain are built up. For weak interparticle contact forces,
an array with nonsliding cylinder-plane contacts is found
(phase }, followed by an array of cylinders also rotating in
the same sense, but with sliding contacts dfplgase 1). If

the chain is long enough, at its end an array of cylinders
operating in a counter-rotating modghase 1) is built up.
Here these studies will be extended analyzing the temporal
evolution of the system to its steady state. We focus on the

experimental situation wherép,dv’/dt’zo. In order to
simplify the representation, the following notations
are introduced: Ni:=N;;;,;/(mg), T;=T;;+1/(mQ),

Ri:==N;  +2/(mg), and §;:=T; | ;»,/(mg). In this notation,
the equations of motio6) and(7) reduce to

dv//dt’=0=N;—N;_;— S, 8
Rizl_Ti+Ti_1 (9)
(U2)dw/ldt'=T;+T;_1+S;, i=1,...L. (10

Without loss of generality, we will assume from now on
that all angular velocities are smaller than the velocity im-
posed by the plane, i.ew/<1. Thus from Coulomb’s law
[Egs.(2) or (3)] and Eq.(9) we obtain the following relation
for the cylinder-plane contact forc® :

S=u'(1+Ti_1—T)). (11)

contacts with nonvanishing relative tangential velocities, the
normal and tangential contact forces are uniquely related in  Equality holds for cylinders sliding on the plane, i.e., if

expressiorn(2). For each of the remaining contacts with van-

o] #1 or de{/dt'#0. Insertion of Eq.(10) into Eq. (11)

ishing relative tangential velocities, there are two p053|b|I|—y|e|dS the useful relation

ties: (a) For asliding contact ¢! J9&0) the contact forces are
again related by expressidf8). The sign of the relative an-
gular acceleratlorwIJ , input in expressior{2) and resulting
from expression(7), however, has to be determined self-
consistently.(b) For eachnonsliding contact,inequality (3)
has to be satisfied. The conditidrfJ-:O yields a further
equation, but with a maximum number bflinear indepen-
dent equations. Thus, for fewer thannonsliding contacts,
Nt independent equations can be obtained from expressio
(2) and(3).

In the packing investigated here, the total number of con-

tacts is given bN'°'=2L + 1 (see Fig. 1 This yields a total
number of N''+L=5L+2 values of contact forces and
angular accelerations. These quantities are governed by
maximum of 3.+1 linear independent equatioh&), (3),

(12do{/dt'<sp'+(1-p")Ti+(1+u)Ti 1. (12
Possible solutions of the expressiof@—(10) and (12)

will now be discussed for two typical situations, where all

contacts between neighboring cylinders are either sliding or

nonsliding. In the steady state, phases | and Il would corre-

spond to sliding interparticle contacts, and phase Il to non-

sliding interparticle contacts.

ns

1. Sliding interparticle contacts

We consider a cylinder, and assume sliding contacts
with its neighbors, i.e.,T;_;=—uN;_; and T;=—uN;.
This enables us to calculate, from Ed8) and (10), the
following identity:

(6), and(7)]. Thus only one free external parameter remains,

e.g., the total horizontal compression of the chain. The maxi-

(wl2)doildt’=(1+w) T —(1-w)T;. (13
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A combination of expression§l?2) and (13) yields, after derived. Inserting identity11) into Eq. (8), after summation
some elementary manipulations, one obtains

do//dt’' <4(T;_,—T), (14) Ni=Nj =/ (i=ig)=p/(Ti=T;) (15)
with for i=ig+1,...0p+Ls At the left boundary of
otl,...JjptLs. ry of the
counter-rotating array, we assume a sliding interparticle con-
, tact, T; = — uN; . The condition of a sliding contact at the
1-pu right boundary, constituted by a cylinder or the confining

Equality is given if the cylinder slides on the plane, i.e., forwa”’ glvesTi0+L3= T NigeL, Here _t/“_LLs IS thg §hort-

o/ <1. In this case, for a weak confining contact force hand notation of the product of the friction coefﬂuezm[3
T,_,>T*, a positive acceleration is obtained. The rotationwith the sign of the relative tangential velocity at the right
velocity approaches the valug/ =1, where the cylinder is end of the counter-rotating array. In fact, for a given value
rolling without friction on the plane. At this point, accelera- * ., bothcontact forces are fixed, as can be deduced from
tion stops: the unique solution satisfying relatiéhd) is  Eqg. (15):

dw{/dt'=0. As can be easily checked, the assumption of a

T*:=— uN*:=—

u(1—p)
5 .

nonvanishing angular acceleration would always yield the iML3{(1—MM')NiO+M’|—3}

opposite sign as solution. This shows clearly that phase I, Ti0+L3: iML3Ni0+L3: .
iri - i ithe! /dt’ = 1xp' m

requiring a steady-state solution witlw,/dt’=const-0 3

[3], has zero length in the case=v,=0. .
As shown in Ref[3], the possible steady-state solution T_he contacts forces;, andTi ., (msteaq Ofur ;) are con- _
(o =1dw//dt’=0) can especially be achieved on the left sidered here as the control parameters in the counter-rotating

hand side of the array, if the external confining fofdgis  array. , _ ,

weak enough. A closed array of particles in this steady state 1he valuesT; of the interparticle tangential contact forces
is built up, and thereby constitutes phase I. Since in thi€an be evaluated explicitly from the nonsliding condition
phase the interparticle contacts are sliding, all forces are )

uniquely determined. From E¢13) we obtain an exponen- dof 1./dt'=(=1)'dof ,/dt'=:(-1)o,

tial increase of the interparticle friction forces in phase I:

- , valid for 1=0,...L;—1. For the counter-rotating array,
([1tu . o p(1+u”) identity (12) yields, after a few elementary manipulations,
Ti=|——] T; with T;=———N,.
1- ) _
_ _ _ _ o (-1 o e @
For the first cylinderi=L;+1 with contact forceT Tri=—— ()| Tj, —— |, (16)
M e

<T*, the steady-state solution no longer exists. Accord-

ingly, the number of particles in the phase.l, is given by where 1=0, ... Ls. The notationsa:=(1+ w')/(1— ')

* " _ _ and T?:=T;+ u'/2 have been introduced. So far, a similar

1= —In(NO/N )+ In(1+p7) ~In(1 'u)_ result for the steady state of an accelerated array was derived
In{(1+p)/(1—p)} in Ref. [3]. Without acceleration, however, more effort is

needed to determine the steady-state velocities in phase lll.

In the following, we will show that in this case, a steady-

For u= w", this expression agrees with the result for a non-,
accelerated array in Reff3]. This result is exactly what one state solution does not exist for sliding particle-plane con-

expects intuitively: fpr weak confining forces, the particle- taf:ts. Resul{16) allows us to calculate the angular accelera-
plane contacts dominate, and the system reduces the loss o -

energy by friction at these contacts. For strong horizontallon @ from the control parametef®j and T . ,:
confining forces, however, the interparticle contacts domi-
nate. Thus a counter-rotating behavior can be expected for

this case. —_—
au’ ati-1

Ly+ 179 LyT®
C(CD)ST L el Ty,

(17)

2. Nonsliding interparticle contacts

. . . . It turns out that for given experimental parametersu’,
Wwe will now dISCUS.S possmlg solut!ons for a Clpsfed. array,uL , and L3, a vanishing angular acceleration is achieved
of Lz counter-rotating particles indexed with=i, 3

+1,...jo+Ls As consequence of the perfect counter-OMY Tor one single value OTi.o' Accordm.gly, a ste.ady-state
rotations, the interparticle contacts are nonsliding;(,  Solution for the counter-rotating array with <1 exists only

_or ; ; _ ; in singular cases.
=vi;4+1=0forig+1<i<L;—1). Atthe particle-plane con- ; ) ) i
tacts, friction is supposed to be mobilized. This enables us tg_NSertion of Eq.(17) in expressior(16) yields the depen-

0 . ;
determine all forces uniquely, especially since relatiis dence of the internal tangential contact forces on the two
and(12) hold with equality. external parameters:
Although Coulomb’s law does not hold in this case, a

® __n\lf1— ® _1\LaT®
unique relation between the contact foré¢sand T; can be Tio+'_( DHA p,)TiO+p|( 1) 3Tio+L3}’ (18)
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wherel =0, ... L;. The weightsp,:=(a'—1)/(a*3—1) in-  longer contradicts expressiofl7). Due to the additional

crease monotonically from zero &0 to their maximum nonsliding cylinder-plane contacts the forces are no longer
value of 1 at I=Ls Accordingly, the quantities uniquely determined in this counter-rotating steady state
(-1) Tiez+l vary monotonically from'riﬂ; to their value for  (phase Il). We conclude that in phase Ill of a nonaccelerated

| =L,—with upper and lower bounds at the boundaries. ~ array only two angular velocities existi =+ 1.
So far, the forces and accelerations have been determined
analytically for the counter-rotating array. Resulls) and C. Numerical simulations
(18) enable us to check quantitatively the conditions under
which this array can be built up, a point neglected in previ-
ous investigation$3].
The first restriction follows from the requirement, that the
particles do not detach. Formally, this requires the positivit

?r]: the pIane? rle{:lctlon forcfﬁ; |n|E_q. (9). In Ref'([fg)' and (7) have to be tested numerically. The fast converging
€ exponential Increase ot e | In expression contact dynamicslgorithm was shown to be useful for the
gave rise to a restriction of the lengtty. Expression(18)  getermination of the steady state of the system at constant

fShOWS instead thatdtgerlowzr tﬁnd uptpelr bounds; of thesr"?onvanishing acceleratiar# 0 [3]. In these numerical stud-
orces are governed by ar’1 € controf parame e®;  ies, a unique solution was always found. This observation
andT; ... Thus, aslong aa’,|T; |<1, the positivity ofR;  has important consequences for the stability of nonsliding
is guaranteed even for a long counter-rotating array, iftontacts. A nonsliding contact is stable if the soluthq’Jn

w' i La<1. This relation is especially valid fall lengths :l}irj =0 is approached from both sides;; :o*:{}ifj<o

Ls if a frictionless wall is chosep ,=0. andvf;=0"=v{;>0. Here the notation 0 (0~) is used for
Finally, it remains to check the necessary conditi(j an infinitesimal positive(negative number. Clearly, the
=<uN; for nonsliding interparticle contacts. Making use of sagme conclusion holds in the case=0 andz}i'j +0. Thus a
identity (15), this condition corresponds to upper and lower,nsjiding contact is always obtained as the unique solution,
bounds forT; , and can be regarded as an attractive fixed point as well. This
is valid as long as the signs of the relative velocities at the
other contacts do not change. These considerations have im-
. portant implications in the numerical simulations of the sys-
with  TP=T; —I[up'/(1-pp')] and TPH:=—[(1  tem. Performing a rough numerical integration of the equa-
—MM')/(1+#M')]Tmi+n| . Clearly, a check of these condi- tions of motion(6) and (7) with equidistant time stepét’,

i . h P )
tions in expressiofiL8) yields further restrictions on the fric- the situationv;; =0 will almost never occur. Nevertheless,

tion forcesT; andT; .. Their formal derivation requires a stable nonsliding contact$j) can always be detected from

. S . . . an oscillatory behavior of the angular velocities around the
separate investigation of various cases. Accordingly, its gen:

: N .
eral representation here would be too involved. We hav ixed pointv;;=0. Furthermore, the simple ansatz
found that it is sufficient to restric‘_[ioﬂ3 such that relation = — i Sgr(virj)Nij
(19 holds forl=L3— 1 5. In particular, the latter case re-
quires thau, < u. For small values of, only in arestricted g syfficient for a determination of the friction forces, yield-
range of values foff; no contradictions of the nonsliding ing an enormous simplification for the numerical approach
conditions appear. The most restrictive conditions are obtsee Ref[11]).
tained for a long counter-rotating array, whepg~0: First, we have tested this numerical integration procedure
—TMX<T, +u'<—TMN  This yields, in particular, an for a system consisting of only one cylinder. In its steady
0 0 0 state, the cylinder simply rolls on the plane without friction.
The numerical results are illustrated in Fig. 5 for a horizontal
compression oNy+N;=4.
p(p')? (20) Starting the numerical integrations with a negative rota-
2(1—MM'). tion velocity att’=0, the cylinder’'s rotation is positively
acceleratefdw;/dt'=2u" (cf. Eq.(14))] until w;>1. Just
The boundT** is slightly larger tharT* after expression having passed this fixed-point solution, the acceleration
(14). For small friction coefficients, both values become in-changes sign, and the expected oscillations of the angular
distinguishable. Thus our intuitive expectation of a countervelocity around the valua;=1 can be observed. Clearly,
rotating behavior at the right of the array building up phase ftheir amplitude decreases with the time step, since the fluc-
is confirmed. tuations of accelerations and forces are independent of the
To summarize, a counter-rotating array can be expectedalue of 6t’. In particular, the friction force between the
on the right-hand side of the chain, but with a nonvanishingparticle and plane changes its direction. Thus, a numerical
angular acceleratiofEq. (17)] when the particle-plane fric- integration for a fixed value dil;<<x’ would yield a nega-
tion is mobilized for all cylinders. Accordingly, particles tive horizontal acceleration of the particle when>1. For
with positive acceleration achieve an angular veloeity  longer chains with several particles with fixed pointsugt
=1. At this point, a steady-state solution with=0 no =1, the value olN, would have to be chosen even larger in

In the case of fluctuating confining forces, E@®.and(7)

can no longer be treated analytically. However, their numeri-

cal integration is a complicated task when the relative tan-
ential velocities vanish at several contacts. In this situation,

all combinations of case®) and(b) discussed after Eq$6)

T?;T|STio+|$Tirzi>|(- (19

estimate of the upper bound ﬁfo:

TiogT** :T* +
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Thus fixingN, as a control parameter will allow one to con- %—
sider only highly confined chains. The applicability of this ¥

-

1.5
1 KYAMAYAY’\‘IKYAVAMAVAVAIAVA‘I’VAYKVKYAYAVAVKVA\(AYAJAV&MAJv
2Q
2 j
- 05 ¢
3 — 8t'=0.2
3'_ J
0 {
-0.5 . -
0 5 10 50
t=t g/v,
FIG. 5. Temporal evolution of the rotation velocity of one par- 1 ] N .
ticle (L=1) confined by the horizontal compressibiy+N;=4. ) ‘,,f"_ i1 / /M*‘M
The friction coefficients arg.’ =0.3 andu”=0. I o
05}/ e X 1
. . . o i=3
order to guarantee the close-packing condition of the chain. < /

numerical procedure is less restricted by choosing the sum of 3
both confining forcesNy+ N, , as an external parameter in-
stead.

How the algorithm works if the system approaches sev- , - -
eral nonsliding contacts is presented for a chain with two 0 10 20 30 40 50
counter-rotating cylinders. Figure 6 again shows a clear os- =t giv
cillating behavior around the fixed-point solutiors =1 P
and w3+ w,=0. The fluctuations of the angular velocities, g, 7, Temporal evolution of the rotation velocities of four
larger than for the system in Fig. 5, have been reduced by the,ricles ( =4) confined byN,+ N, = 1.4 (top) and 1.6(bottom.
choice of smaller time steps. Figure 6 shows, that first therhe friction coefficients arge=0.4, ' =0.3, andu"=0.
counter-rotation of the particles is established. The rotations

alre thltlen co[[lre]:ctl\/lely a‘_ﬁf lerated gnt;l thle fII’Sft t%ylmder ‘T"m'both compressions, the first cylinder is positively accelerated
ply TollS on the plane. The numerical value ol thiS acceleray, ) it simply rolls on the plane, whereas a counter-rotating

tion, which can be easily estimated from the average slope, 'érray is built up by the remaining three cylinders. In the

in good quantitative agreement withzthe analytical prediCtioncounter-rotating region, the rotations of the cylinders are ac-
derived from Eq(17): dw,/dt’=2,""=0.18. . celerated until the positively accelerated particles roll on the
_ Typical results for a chain of four particles are shown inpane without friction. Again, the numerically obtained ac-
Fig. 7 for two different horizontal compressions. The 0scil-ejerations are in excellent quantitative agreement with the
lating behavior of the curves has been reduced here by thg, \vtical resulfEq. (17)]. In particular, our prediction of
choice of a relatively small integration step &if =0.01. At only two angular velocities in the steady staig,=+1, is

confirmed numerically. The values of the horizontal com-
pression determine the spatial arrangement of the rotation
velocities. At low confining forces the first two cylinders roll
on the plane without friction. At high compression all par-
ticles act in a counter-rotating mode.

We conclude that the simple molecular-dynamics code
[11] presented here yields reliable results for the temporal
evolution of the angular velocities as well as for the steady-
state properties. The same rotation patterns are obtained for a
regularized version of Coulomb’s law, as used in Réi,
with reduced fluctuations of the angular velocities due to the
regularization of the friction forces in the vicinity of vanish-

- ) ' ; ing relative contact velocities.
0 5 10 15 The different steady-state patterns with only two phases
=t giv (I, and Ill) are determined by the length of the first phdsg,
P Each value oL ; corresponds to a certain range of the hori-
FIG. 6. Temporal evolution of the rotation velocities of two zontal compression of the chain.

particles (=2) confined by the horizontal compressidiy+ N, The real transition timd, s to the steady state can be
=4. The friction coefficients arg=0.4, »' =0.3, andu.”=0. simply obtained from its valud,,s in the simulations:

- 8t=0.05
— 5t=0.005
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QOGN
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. ) . . FIG. 9. Polar representation of the temporal evolution of the
rotation angles for the same chain as in Fig. 8, confined\py
0 100 200 300 400 +N_=1.58+0.2 cos(2rit").
t)

FIG. 8. Temporal evolution of the rotation velocities of the sec- 1 Ne situation changes drastically, when the periodicity of
ond of four particles I(=4) confined byNy+N,=(No+N,)  the external compression approactigs,,s (center of Fig.
+0.2 cos(arit’), with straight lines fofNy+ N, )=1.5 and dotted  8). The particle remains mainly in its dominant steady state
lines for (Ng+N_)=1.58. The friction coefficients arez=0.4, [w,=1(—1) for (Ny+N_)=1.5(1.58). The transition time
#'=0.3, and u"=0. The integration steps are chosen &  is now too long for a switch between these two states. This
=0.015. effect becomes more pronounced for a higher frequéseg

the bottom of Fig. 8 Here, the oscillations of the compres-
Tirans= TtransVp/9- In the experiment, the velocity of sion only provoke slight perturbations of the angular veloci-
the basal plane is smaly,<10"* m/s, yielding T{shs  ties.
<TiansX107° s. Numerically, we have observed that typi- 'I_'o summarize, the effects of temporal oscillations of t_he
cally T/,,,«<10% thus the transition time in the experiment horizontal compression are largest for small frequencies.
can be expected to be very shoFf*? < 1072 s, They d.|m|n|sh with increasing freq.uency. _

We now turn to a numerical investigation of the chain's " Fig- 9, the polar representation of the rotation angles

reaction on temporally fluctuating horizontal compressions/©F the situation of Fig. 8 is shown witfNo+N,_)=1.58. A

To this end, we assume periodic oscillations of the confinindlu@litative comparison with the feature of the experimental
forces: curves in Fig. 2 shows that the experimentally observed os-

cillations of the rotation angle at the right end of the chain
Ne+N; =(N-+N: Y+ A cog 2mut’). can in fact be recovered theoretically for the smallest fre-
0T NL=(No*Ny) L2mt’) quency 2rv=0.02.
As a consequence, the horizontal compression switche&;/i\ae vt/]i?r\mlesg\fgrgrlnzj?f?eP(;Jnn:(esrtlgglj S'E:Laegonﬁh;orr;lﬁgg;e
between the ranges of the different steady-state patterns f%hown in the polar re resentationyin Fi s. 10 and 11. The
constant compression. Thus simple oscillations between b P gs-. '

these steady states can be expected for frequencies witheﬁceCtS are only small for the higher frequency in Fig. 10,
>€ steady , P . q . Whereas convincing agreement with the typical features of
periodicity time larger thaiy,,,. For higher frequencies,

LT . . - -~ the experimental results is found for small valuesydfFig.
the 5"“6‘“09 IS Ies_s obvious. We have studied thg S'tu""t'oril). In Fig. 11, not only the oscillations of the rotation angles
for the chain in Fig. 7, choosing=0.2 and two different

: . are clearly detected. An intermediate behavior can also be
average compressions. For all frequencies, we observed th%tbserved foi =3. To summarize, in the long-time behavior,

arter a\{?r:y sr_lolrt tragstlﬁlor:htlme, the f.”?t part;plg rolls otn. theoscillations of the confining forces may have an important
plan€ withw, =1, and the thre€ remaining Cylinders act N a;,4,ance on the rotational patterns as long as the confining

counter-rotating mode. Thus it is sufficient to conS|_der theforces pass the threshold values between different steady-
temporal evolution of one of the counter-rotating cylinders.

In Fig. 8, the temporal evolution of the angular velocities

of the second cylinder is represented for three different fre- /,, \
quenciesv. For a low frequencyT | ,,<1/(27v) (top), its ‘
angular velocity is observed to switch betwaef=1, when
g Y 1 2 3 4 5 6 7 8

No+N_ is small, andw,=—1 for largeNy+N, . Accord-

ingly, the whole chain switches between the two different k|G, 10. Rotation angles as a functiontéffor a chain of eight
steady states in Fig. 7. This is exactly what was predicte@ylinders with friction coefficientsu=x'=0.2 andu”=0. The
above. The difference of the value of the average compresxternal compression isly+ N, =1.8+0.1 cos(2rit’), with 2mv
sion, (Ng+N_), only slightly affects the time the chain re- =5x10"3. The width of theN,,=5x 10° integration steps ist’
mains in its different steady-state patterns. =0.033.
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O [degree]

FIG. 11. The same as Fig. 10 form2=10"3, -10

0 2000 4000 6000
time [s]

state patterns. This influence is largest when the time the
compression remains in the range of one steady-state patterr
is larger than its typical transition time. Our numerical inte-
grations show that, at high frequencies, when these times are
smaller than the typical transition time, the chain chooses
one dominant pattern. In this case, the fluctuations of the
compression only yield slight perturbations of the rotation .
velocities + w,, at this state. The amplitude of these oscilla- 0 ' 2000
tions reduces with increasing frequenegyof the compres-

sion’s oscillations. At low frequencies, when 72

<1T{ ,ns, the chain “switches” between different steady- _ _
state patterns. These switches evoke changes of the parity of FIG. 12. Time dependence of the experimentally measured ro-
the length of the counter-rotating arréghase Il). Conse- tatlor_1 angles of cylindei=7 _for a chain withL=9. Top: total
quently, the rotation velocities of the cylinders at the end offotation angles; bottom: rotation angles between two snapshots.
the chain change sign, yielding the experimentally observed

oscillations of the rotation velocitie&f. Fig. 2. The inter- to running averages of the velocities in this time interval. In
mediate behavior in the middle of the chain can then b&rder to compare directly with the theory, the instantaneous

understood as a superposition in time of phases | and |II. angulla_r velocities of the cylinder wquld _be needed..These
We conclude that for irregular fluctuations of the com- velocities, however, are not accessible in the experimental

pression, the low-frequency variations mainly determine thdnéasurements. Therefore, the moving averages will be the
asis of our analysis. The maximum rotation velocity

variations of the rotational patterns. Their high-frequenc - . ) ~
contribution only evokes slight perturbations of the dominant(|@p|=0.34°/s) corresponds to a rotation angle 6 =
+3.1° between two snapshots. This angle is only rarely ob-

behavior. X ) :
served in the experiment. However, as discussed at the end
of Sec. lll, instantaneous rotation velocities much smaller
than = w, can be expected to give a negligible contribution.
Thus the experimental data presented in Fig. 12 give rise to
several switches of sign of the rotation velocity in the time
In Sec. Ill, we showed that the striking unusual propertiesnterval At=9 s.
of the experimental data can be attributed to slowly varying In order to gain a deeper insight into the temporal corre-
temporal fluctuations of the horizontal compression. This catations of the experimental data, we have computed their
happen whenever the time scale of these slow fluctuations &utocorrelation function as well as their power spectrum.
much larger than the transition tinTg, ,,,s of the experimen-  These functions offer excellent statistical tools for the detec-
tal system. Based on our numerical results, the typical trantion of characteristic properties of an irregular signal.
sition time of the system could be estimated to be very short: The autocorrelation functiod\; of a time seriesf(t;)
Tirans<10 2 s; thus all fluctuations with a larger time scale measured in equidistant time step# at timest;, i

AO [degree]

4000 6000
time [s]

IV. EXPERIMENTAL RESULTS II:
TEMPORAL CORRELATIONS

yield superpositions of different steady-state patterns. =1,... N, can be estimated from
In this section, we will analyze temporal correlations of
the experimentally observed fluctuations of the rotation A¢(T=két)=c,/cq,

angles. Such an analysis requires a higher precision of our

angle measurements. The precision is restricted by the imaggith

analysis. Zooming in on the front of only one cylinder of the

chain, we obtain a reduced maximum error of 0.4° for the 1 Nk o o

measured angles. A typical experimental result for the cylin- Ck:N—k E [ty ) —FIf(t)—f]. (22)
deri=7 of a chain ofL=9 cylinders is shown in Fig. 12. =1

The chain has been confined by a cardboard block of 23.8 9. __

All the other experimental parameters are the same as iHere f=(1/N)=N_,f(t;) is the sample mean df (cf. Ref.
Figs. 2 and 3. [12]), andcy is the estimated autocovariance.

The irregular shape of the curves reminds one of a signal A hidden periodicity of an irregular signdlcan be de-
obtained from a stochastic process. Whereas the total rotéected from peaks of;(7) at integer multiples of its period-
tion angles® (t) show a nonstationary behavior, a stationaryicity time. On the other hand, for random values f¢t),
process seems to fit the short-time rotation angié(t) generated by a stationary uncorrelated proc@sér) van-
=0O(t+At)—0O(t) between two snapshotsA{=9 s). ishes for all valuesT>0. At =0, one always obtains
These “instantaneous” rotational measurements correspond;(0)=1.
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FIG. 13. Estimated autocorrelation function of the instantaneous S
rotation angles presented in Fig. {t®ttom).
The autocorrelation function estimated from the instanta- 0 P R S SN T
neous rotation angles in Fig. 1Botton) is represented as a 0 100 200 ~ 300 400
function of 7 in Fig. 13. We have restricted our representa- At [s]

tion to relatively small values of compared with the total

measuring time for which our estimate is expected to give FIG. 15. Estimated variance of the short-time rotation angles

reliable results. For the mean rotation velocities between twa ® (degreg as a function ofAt.

snapshots, no significant correlations can be detected for

=At. described in terms of a stationary stochastic process. When-
Clearly, a more or less regular oscillating behavior can bever the time between two events is not of the order of

excluded on the basis of these results. The small values aft'a"s  thjs corresponds to a random superposition of the

Ape for 7= 6t in Fig. 13 more likely suggest that one think steady-state rotation velocitiesw,,.

in terms of random velocities generated from a stationary |n a random-walk system, the mean squared displacement

stochastic procesgandom walk. The mean error of an es- increases linearly in timécf., e.g., Refs[15,16), i.e.,

timated autocorrelation which theoretically vanishes for all

lags k>q can be calculated from Bartlett’'s approximation ([O(1)—(O(1))]?)=2Dt.

[13]. It enables us to detect systematic deviations from a

random-walk behavior. This error, represented as a gray bar i . i

around zero, covers most of the calculated nonvanishing val-_ 1€ slope of this function is completely determined by the

ues in Fig. 13, and no apparent contradiction to our hypothgiff_USion constantb, from which further insight into the
esis can be detected. Moreover, we can sed tRevariation  MICroscopic” properties of the process can be gained. The
stationarity of the process implies that this relation also holds

—1B(F)[2
of the power spectrur;=[0 (f)|* for AO(At). We have estimated the variance &) (At)
10T from the autocovariance, in expression(21). The result,

o(f)= _f dt €271@ (1), presented in Fig. 15, shows a remarkably linear increase up

TJo to At=~300 s. For larger times, the slope is increased only

by statistical deficiency, not by real physical correlations.
shown in Fig. 14, typical behavior for a random waild]. The slope of the straight line isS2~0.04 degre€és. In
We conclude from our results that the temporal fluctua-order to exploit the information obtainable from this value,
tions of the horizontal confinement of the chain can best bassumptions on the temporal distribution of the random
events have to be made. Since no further information is
10 — - - available, we assume the random events at random times.
With this assumption we follow the standard lines for diffu-
sion by collisions in an ideal gas. For further details see, e.g.,
Ref. [16]. Now the diffusion constant can be derived from

10° . .
, the “microscopic” processes. The result,
S; [deg]

10 D=(w?~ w7, (22

3 relatesD to the mean time interval between two eve@s,
10 and the variance of the instantaneous rotation velocitiés,

— w?. Furthermore, our assumption of random times for the

R events enables us to derive an exact expression for the dis-

10 107 — 103 "1‘6_2 — 101 tribution of time intervalsr between two eventil6]:
fs™
. . 1 _
I:igFlle. 14. Power spectrum of experimental data presented in P(7r)= ;ex;i—a-/r). (23)
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=
< 0.1 +—
720 t
360 o - .
0 O 2 a4 6 8 10 12 14
1 3 5 7 9 1 13 FIG. 17. Length distributiop(L,) of the phase | for the experi-
cylinder ment presented in Fig. 16.

FIG. 16. Measured total rotation angles for a chain of 14 cylin-\yith thet,(n) values we can deduce the time fractiofL. )
ders. when phase | has a length bf cylinders.p(L,) is simply
o — — 5 — given by

From the slope in Fig. 15 andz—szwp (w=0), we
obtain 7=0.16 s. Making use of expressid@3), we can _
check now the consistency of our assumptions. The percent- p(Ly)=t(Ly)—t(Ly+1). (27)
age of time intervals shorter than a very large transition time

of 1072 s is small &6%), thus strongly supporting the The |ength distributiop(L ,) of phase I for the experimental
existence of mainly two instantaneous rotation velocitiegjata presented in Fig. 1614 plexiglas cylinders,v,

* w, in the experiment. On the other hand, the percentage of 155 umls, 7.5 g confining magss shown in Fig. 17.

events on a time scale larger than th2e distance between two \ye conclude that the results of our numerical integrations
snapshots{=9 s) is negligible (-10" *9%). This explains,  for oscillating confining forces, together with the analysis of
why the maximum rotation angle of 3.1° cannot be de- the temporal correlations of the experimentally measured ro-
tected in Fig. 12. _ tation angles, strongly support our hypothesis—that the un-
. Itappears clearly that the length of phase | oscillates durexpected properties of the experimental data can be traced
ing time. The total measured rotation angle of each cylindepack to random superpositions of different steady-state rota-

is the result of the superposition of different steady stategon patterns. There is strong evidence that the chain per-
(Fig. 1, with perfectly known spatial correlations. The first {orms acollective random walk

particles are in phase | and are rolling with the same velocity

+ w,, the first particle in phase Ill has a velocityw,, and

the velocities of the others are alternating between, and V. CONCLUSIONS

— Wp. . g .

So, with this description, the distribution of lengths of  '© Summarize, the striking unexpected properties of our

phase | is completely determined by the knowledge of théXPerimental measurements can be—qualitatively and
total angles®(n) of each cylindem=1, ... L during the quantitatively—attributed to slow varying temporal fluctua-
experiment(Fig. 16. We can easily corhputé the fraction in tions of the chain’s horizontal confinement. In detail, we
time of each steady state giving the length distribution 0fshowed, by means of rigorous analytical derivations, that the
phase . steady state of the perfect nonaccelerated system has only
Our hypothesis of instantaneous steady-state velocitie¥/© rotation velocities,* w,. Only two rotational modes,

gives us a few recurrence relations between the differerff@ses I and lll, exist in this case. The molecular-dynamics
time fractions:t,(n), t;, (n), andt;;, (n), respectively, are code developed here shows an excellent quantitative agree-

the fractions of time during which the cylinderis in phase ment with the derived rigorous analytical results. From our

l, in phase Il with the velocity+ w,, and in phase Ill with rs]tL:a r;gncsitzlTgllj?gobn:’est:%;épdlcg l;[:aa\r;zlrtloghgrrpﬁort?h;hgx-
the velocity — w,. ©,,4 is the total rotation angle of a cyl- y y

inder which always is in phase I. Then we obtain peri_m,ental_ situation. Slowl_y va_lrying oscillations of .the
chain’s horizontal compression yield temporal superpositions
o(n) . B of different steady-state patterns. For periods smaller than
0 =t (n)+t,(n)—t,,(n), (24 the transition time of the system, the rotation patterns are
max only weakly affected by these external fluctuations: the
with dominant steady-state pattern is obtained with slight fluctua-
tions of the rotation velocities. The amplitude of these fluc-
t(n)+t;;, (N)+t,;,(N)=1 (250  tuations diminishes with increasing frequency. The typical
features of our experimental measurements are reproduced
and by numerical simulations with slow-frequency oscillations of
N B the confining forces.
ty (M) =t (n—1). (26) Further insight into the experimentally measured fluctua-
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